In order to produce smaller amounts of oxygen, O2 from the air by adsorption of other gases can be separated. These air flows through molecular sieves. In this case, nitrogen and carbon dioxide are adsorbed and only O2 and argon pass through. This is used in O2 concentrator mainly used medically (oxygen for energy).
The development of O2 concentration in atmosphere is described in article Development of earth's atmosphere. The O2 allotrope O3 Ozone is present in atmosphere at low concentrations. In space, O2 is the third most abundant element after hydrogen and helium. The mass fraction of O2 is in solar system about 0.8% (this corresponds to an (atomic) number fraction of about 500 ppm).
Oxygen is not created in primordial nucleosynthesis, but is produced in relatively large amounts in giant stars by helium burning. It is first formed from three helium nuclei 12C (Triple-alpha process), which subsequently merged with another helium nucleus to 16O. 18O is formed by fusion of 4He with a 14N nucleus.
Even in so-called main sequence stars like the sun plays a role in energy oxygen. In CNO cycle (CNO cycle) represents O2 is an intermediate of nuclear reaction in which proton capture by a 12C nucleus, which acts as a catalyst, a 4He nucleus (alpha particle) is produced. In extremely heavy stars occurs in late stage of their development to O2 burning, in which the O2 is used as nuclear fuel for reactions that lead to construction of even heavier nuclei.
With the discovery of O2 its meaning was not clear during combustion. The Frenchman Antoine Lavoisier found in his experiments that during combustion does not escape phlogiston, but O2 is bound. By weighing it demonstrated that a substance after combustion was not easier but harder. This was caused by the additional weight of ingested during the combustion process oxygen.
Initially, the O2 has been accepted as a basic component for the formation of acids. Therefore, the term Oxygenium (acidifier) 1779 proposed by Lavoisier oxygen. In fact, most inorganic acids in solution of non-metal oxides in O2 water. The halogens, such as chlorine and bromine, is therefore held for a long time oxides of unknown elements. Only later was recognized that hydrogen is responsible for the acid character.
The actual separation of nitrogen and O2 by distillation in two distillation columns with different pressures. The distillation is carried out in counter-current principle, that is by the condensation heat of evaporated gas flows upward, condensed liquid drips down. Since O2 has a higher boiling point than nitrogen, it condenses readily and collects at the bottom so, nitrogen at the top of column.
Usually takes O2 in its compounds, and in earth before. In earth's crust almost all minerals and rocks are so well oxygenated water next. Among the most important minerals include oxygen-containing silicates such as feldspars, mica and Olivine, carbonates such as calcium carbonate in limestone and oxides such as silica as quartz.
The development of O2 concentration in atmosphere is described in article Development of earth's atmosphere. The O2 allotrope O3 Ozone is present in atmosphere at low concentrations. In space, O2 is the third most abundant element after hydrogen and helium. The mass fraction of O2 is in solar system about 0.8% (this corresponds to an (atomic) number fraction of about 500 ppm).
Oxygen is not created in primordial nucleosynthesis, but is produced in relatively large amounts in giant stars by helium burning. It is first formed from three helium nuclei 12C (Triple-alpha process), which subsequently merged with another helium nucleus to 16O. 18O is formed by fusion of 4He with a 14N nucleus.
Even in so-called main sequence stars like the sun plays a role in energy oxygen. In CNO cycle (CNO cycle) represents O2 is an intermediate of nuclear reaction in which proton capture by a 12C nucleus, which acts as a catalyst, a 4He nucleus (alpha particle) is produced. In extremely heavy stars occurs in late stage of their development to O2 burning, in which the O2 is used as nuclear fuel for reactions that lead to construction of even heavier nuclei.
With the discovery of O2 its meaning was not clear during combustion. The Frenchman Antoine Lavoisier found in his experiments that during combustion does not escape phlogiston, but O2 is bound. By weighing it demonstrated that a substance after combustion was not easier but harder. This was caused by the additional weight of ingested during the combustion process oxygen.
Initially, the O2 has been accepted as a basic component for the formation of acids. Therefore, the term Oxygenium (acidifier) 1779 proposed by Lavoisier oxygen. In fact, most inorganic acids in solution of non-metal oxides in O2 water. The halogens, such as chlorine and bromine, is therefore held for a long time oxides of unknown elements. Only later was recognized that hydrogen is responsible for the acid character.
The actual separation of nitrogen and O2 by distillation in two distillation columns with different pressures. The distillation is carried out in counter-current principle, that is by the condensation heat of evaporated gas flows upward, condensed liquid drips down. Since O2 has a higher boiling point than nitrogen, it condenses readily and collects at the bottom so, nitrogen at the top of column.
Usually takes O2 in its compounds, and in earth before. In earth's crust almost all minerals and rocks are so well oxygenated water next. Among the most important minerals include oxygen-containing silicates such as feldspars, mica and Olivine, carbonates such as calcium carbonate in limestone and oxides such as silica as quartz.
About the Author:
You can visit boostcanada.ca for more helpful information about Guide To Oxygen For Energy.
No comments :
Post a Comment